Handwritten Symbol Recognition by a Boosted Blurred Shape Model with Error Correction

نویسندگان

  • Alicia Fornés
  • Sergio Escalera
  • Josep Lladós
  • Gemma Sánchez
  • Petia Radeva
  • Oriol Pujol
چکیده

One of the major difficulties of handwriting recognition is the variability among symbols because of the different writer styles. In this paper we introduce the boosting of blurred shape models with error correction, which is a robust approach for describing and recognizing handwritten symbols tolerant to this variability. A symbol is described by a probability density function of blurred shape model that encodes the probability of pixel densities of image regions. Then, to learn the most distinctive features among symbol classes, boosting techniques are used to maximize the separability among the blurred shape models. Finally, the set of binary boosting classifiers is embedded in the framework of Error Correcting Output Codes (ECOC). Our approach has been evaluated in two benchmarking scenarios consisting of handwritten symbols. Compared with state-of-the-art descriptors, our method shows higher tolerance to the irregular deformations induced by handwritten strokes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hand Drawn Symbol Recognition by Blurred Shape Model Descriptor and a Multiclass Classifier

In the document analysis field, the recognition of handwriting symbols is a difficult task because of the distortions due to hand drawings and the different writer styles. In this paper, we propose the Blurred Shape Model to describe handwritten symbols, and the use of Adaboost in an Error Correcting Codes framework to deal with multi-class categorization handwriting problems. It is a robust ap...

متن کامل

Mixture of Experts for Persian handwritten word recognition

This paper presents the results of Persian handwritten word recognition based on Mixture of Experts technique. In the basic form of ME the problem space is automatically divided into several subspaces for the experts, and the outputs of experts are combined by a gating network. In our proposed model, we used Mixture of Experts Multi Layered Perceptrons with Momentum term, in the classification ...

متن کامل

Symbol Recognition by Multi-class Blurred Shape Models

One of the main difficulties in the document analysis field is the recognition of handwriten documents. High variability among symbols because of different writer styles, different sizes, shape deformations, noise, or intensity changes are just a few problems. In handwriting recognition language models can be used to assist the recognition process. However, in Graphics Recognition hand drawn sy...

متن کامل

Blurred Shape Model for binary and grey-level symbol recognition

Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, a...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007